Design principles of PI(4,5)P2 clustering under protein-free conditions: Specific cation effects and calcium-potassium synergy

Por um escritor misterioso

Descrição

Design principles of PI(4,5)P2 clustering under protein-free conditions:  Specific cation effects and calcium-potassium synergy
Fluid protein condensates for bio-inspired applications
Design principles of PI(4,5)P2 clustering under protein-free conditions:  Specific cation effects and calcium-potassium synergy
PI(4,5)P2 and Cholesterol: Synthesis, Regulation, and Functions
Design principles of PI(4,5)P2 clustering under protein-free conditions:  Specific cation effects and calcium-potassium synergy
Divalent cations bind to phosphoinositides to induce ion and isomer specific propensities for nano-cluster initiation in bilayer membranes
Design principles of PI(4,5)P2 clustering under protein-free conditions:  Specific cation effects and calcium-potassium synergy
Simulation snapshot of a bilayer containing 800 lipids with PIP2
Design principles of PI(4,5)P2 clustering under protein-free conditions:  Specific cation effects and calcium-potassium synergy
A mechanosensing mechanism controls plasma membrane shape homeostasis at the nanoscale
Design principles of PI(4,5)P2 clustering under protein-free conditions:  Specific cation effects and calcium-potassium synergy
Overexpression of mRFP-PI4P5KI increased the concentration of PI(4,5)P
Design principles of PI(4,5)P2 clustering under protein-free conditions:  Specific cation effects and calcium-potassium synergy
Engineered non-covalent π interactions as key elements for chiral recognition
Design principles of PI(4,5)P2 clustering under protein-free conditions:  Specific cation effects and calcium-potassium synergy
Phosphatidylinositol (4,5)-bisphosphate dynamically regulates the K2P background K+ channel TASK-2
Design principles of PI(4,5)P2 clustering under protein-free conditions:  Specific cation effects and calcium-potassium synergy
Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior
Design principles of PI(4,5)P2 clustering under protein-free conditions:  Specific cation effects and calcium-potassium synergy
Activation of VSP (Dr-VSP) reduces PH probe FRET. (A) Cells were
Design principles of PI(4,5)P2 clustering under protein-free conditions:  Specific cation effects and calcium-potassium synergy
Gq-mediated calcium dynamics and membrane tension modulate neurite plasticity
de por adulto (o preço varia de acordo com o tamanho do grupo)