Development of Adverse Outcome Pathway for PPARγ Antagonism Leading to Pulmonary Fibrosis and Chemical Selection for Its Validation: ToxCast Database and a Deep Learning Artificial Neural Network Model-Based Approach

Por um escritor misterioso

Descrição

Development of Adverse Outcome Pathway for PPARγ Antagonism Leading to  Pulmonary Fibrosis and Chemical Selection for Its Validation: ToxCast  Database and a Deep Learning Artificial Neural Network Model-Based Approach
Adverse outcome pathways: Application to enhance mechanistic understanding of neurotoxicity
Development of Adverse Outcome Pathway for PPARγ Antagonism Leading to  Pulmonary Fibrosis and Chemical Selection for Its Validation: ToxCast  Database and a Deep Learning Artificial Neural Network Model-Based Approach
PPARγ agonists inhibit TGF-β induced pulmonary myofibroblast differentiation and collagen production: implications for therapy of lung fibrosis
Development of Adverse Outcome Pathway for PPARγ Antagonism Leading to  Pulmonary Fibrosis and Chemical Selection for Its Validation: ToxCast  Database and a Deep Learning Artificial Neural Network Model-Based Approach
Frontiers From Causal Networks to Adverse Outcome Pathways: A Developmental Neurotoxicity Case Study
Development of Adverse Outcome Pathway for PPARγ Antagonism Leading to  Pulmonary Fibrosis and Chemical Selection for Its Validation: ToxCast  Database and a Deep Learning Artificial Neural Network Model-Based Approach
Integrative Data Mining Approach: Case Study with Adverse Outcome Pathway Network Leading to Pulmonary Fibrosis
Development of Adverse Outcome Pathway for PPARγ Antagonism Leading to  Pulmonary Fibrosis and Chemical Selection for Its Validation: ToxCast  Database and a Deep Learning Artificial Neural Network Model-Based Approach
Frontiers From Causal Networks to Adverse Outcome Pathways: A Developmental Neurotoxicity Case Study
Development of Adverse Outcome Pathway for PPARγ Antagonism Leading to  Pulmonary Fibrosis and Chemical Selection for Its Validation: ToxCast  Database and a Deep Learning Artificial Neural Network Model-Based Approach
Jaeseong JEONG, PostDoc Position, Doctor of Philosophy, University of Seoul, Seoul, School of Environmental Engineering
Development of Adverse Outcome Pathway for PPARγ Antagonism Leading to  Pulmonary Fibrosis and Chemical Selection for Its Validation: ToxCast  Database and a Deep Learning Artificial Neural Network Model-Based Approach
Development of AOP relevant to microplastics based on toxicity mechanisms of chemical additives using ToxCast™ and deep learning models combined approach - ScienceDirect
Development of Adverse Outcome Pathway for PPARγ Antagonism Leading to  Pulmonary Fibrosis and Chemical Selection for Its Validation: ToxCast  Database and a Deep Learning Artificial Neural Network Model-Based Approach
In silico approaches in organ toxicity hazard assessment: Current status and future needs for predicting heart, kidney and lung toxicities. - Abstract - Europe PMC
Development of Adverse Outcome Pathway for PPARγ Antagonism Leading to  Pulmonary Fibrosis and Chemical Selection for Its Validation: ToxCast  Database and a Deep Learning Artificial Neural Network Model-Based Approach
Application of the adverse outcome pathway concept for investigating developmental neurotoxicity potential of Chinese herbal medicines by using human neural progenitor cells in vitro
de por adulto (o preço varia de acordo com o tamanho do grupo)