Binding Force and Site-Determined Desorption and Fragmentation of Antibiotic Resistance Genes from Metallic Nanomaterials

Por um escritor misterioso

Descrição

Binding Force and Site-Determined Desorption and Fragmentation of  Antibiotic Resistance Genes from Metallic Nanomaterials
Stimuli-Activable Metal-Bearing Nanomaterials and Precise On
Binding Force and Site-Determined Desorption and Fragmentation of  Antibiotic Resistance Genes from Metallic Nanomaterials
Fermentation, Free Full-Text
Binding Force and Site-Determined Desorption and Fragmentation of  Antibiotic Resistance Genes from Metallic Nanomaterials
Antibiotics, Free Full-Text
Binding Force and Site-Determined Desorption and Fragmentation of  Antibiotic Resistance Genes from Metallic Nanomaterials
Antibacterial nanomaterials: Upcoming hope to overcome antibiotic
Binding Force and Site-Determined Desorption and Fragmentation of  Antibiotic Resistance Genes from Metallic Nanomaterials
Nanomaterials: The New Antimicrobial Magic Bullet
Binding Force and Site-Determined Desorption and Fragmentation of  Antibiotic Resistance Genes from Metallic Nanomaterials
Engineering hybrid nanosystems for efficient and targeted delivery
Binding Force and Site-Determined Desorption and Fragmentation of  Antibiotic Resistance Genes from Metallic Nanomaterials
Glycan and Protein Analysis of Glycoengineered Bacterial E. coli
Binding Force and Site-Determined Desorption and Fragmentation of  Antibiotic Resistance Genes from Metallic Nanomaterials
Nanomaterial-based therapeutics for antibiotic-resistant bacterial
Binding Force and Site-Determined Desorption and Fragmentation of  Antibiotic Resistance Genes from Metallic Nanomaterials
Soil minerals and organic matters affect ARGs transformation by
Binding Force and Site-Determined Desorption and Fragmentation of  Antibiotic Resistance Genes from Metallic Nanomaterials
Identification of metal-associated proteomes by integration of
de por adulto (o preço varia de acordo com o tamanho do grupo)